Molecular dynamics study of T = 3 capsid assembly.
نویسنده
چکیده
Molecular dynamics simulation is used to model the self-assembly of polyhedral shells containing 180 trapezoidal particles that correspond to the T = 3 virus capsid. Three kinds of particle, differing only slightly in shape, are used to account for the effect of quasi-equivalence. Bond formation between particles is reversible and an explicit atomistic solvent is included. Under suitable conditions the simulations are able to produce complete shells, with the majority of unused particles remaining as monomers, and practically no other clusters. There are also no incorrectly assembled clusters. The simulations reveal details of intermediate structures along the growth pathway, information that is relevant for interpreting experiment.
منابع مشابه
Modelling the self-assembly of virus capsids.
We use computer simulations to study a model, first proposed by Wales (2005 Phil. Trans. R. Soc. A 363 357), for the reversible and monodisperse self-assembly of simple icosahedral virus capsid structures. The success and efficiency of assembly as a function of thermodynamic and geometric factors can be qualitatively related to the potential energy landscape structure of the assembling system. ...
متن کاملDynamics and asymmetry in the dimer of the norovirus major capsid protein
Noroviruses are the major cause of non-bacterial acute gastroenteritis in humans and livestock worldwide, despite being physically among the simplest animal viruses. The icosahedral capsid encasing the norovirus RNA genome is made of 90 dimers of a single ca 60-kDa polypeptide chain, VP1, arranged with T = 3 icosahedral symmetry. Here we study the conformational dynamics of this main building b...
متن کاملEarly stage P22 viral capsid self-assembly mediated by scaffolding protein: atom-resolved model and molecular dynamics simulation.
Molecular dynamics simulation of an atom-resolved bacteriophage P22 capsid model is used to delineate the underlying mechanism of early stage P22 self-assembly. A dimer formed by the C-terminal fragment of scaffolding protein with a new conformation is demonstrated to catalyze capsomer (hexamer and pentamer) aggregation efficiently. Effects of scaffolding protein/coat protein binding patterns a...
متن کاملMechanical properties of the icosahedral shell of southern bean mosaic virus: a molecular dynamics study.
The mechanical properties of viral shells are crucial for viral assembly and infection. To study their distribution and heterogeneity on the viral surface, we performed atomistic force-probe molecular dynamics simulations of the complete shell of southern bean mosaic virus, a prototypical T = 3 virus, in explicit solvent. The simulation system comprised more than 4,500,000 atoms. To facilitate ...
متن کاملMechanical disassembly of single virus particles reveals kinetic intermediates predicted by theory.
New experimental approaches are required to detect the elusive transient intermediates predicted by simulations of virus assembly or disassembly. Here, an atomic force microscope (AFM) was used to mechanically induce partial disassembly of single icosahedral T=1 capsids and virions of the minute virus of mice. The kinetic intermediates formed were imaged by AFM. The results revealed that induce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biological physics
دوره شماره
صفحات -
تاریخ انتشار 2018